Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
New Phytol ; 242(2): 626-640, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38396236

RESUMO

Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.


Assuntos
Giberelinas , Nodulação , Nodulação/fisiologia , Citocininas , Ácidos Indolacéticos/farmacologia , Pisum sativum/genética , Hormônios , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant Sci ; 305: 110846, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691972

RESUMO

Legume nodules are a unique plant organ that contain nitrogen-fixing rhizobial bacteria. For this interaction to be mutually beneficial, plant and bacterial metabolism must be precisely co-ordinated. Plant hormones are known to play essential roles during the establishment of legume-rhizobial symbioses but their role in subsequent nodule metabolism has not been explored in any depth. The plant hormones brassinosteroids, ethylene and gibberellins influence legume infection, nodule number and in some cases nodule function. In this paper, the influence of these hormones on nodule metabolism was examined in a series of well characterised pea mutants with altered hormone biosynthesis or response. A targeted set of metabolites involved in nutrient exchange and nitrogen fixation was examined in nodule tissue of mutant and wild type plants. Gibberellin-deficiency had a major negative impact on the level of several major dicarboxylates supplied to rhizobia by the plant and also led to a significant deficit in the amino acids involved in glutamine-aspartate transamination, consistent with the limited bacteroid development and low fixation rate of gibberellin-deficient na mutant nodules. In contrast, no major effects of brassinosteroid-deficiency or ethylene-insensitivity on the key metabolites in these pathways were found. Therefore, although all three hormones influence infection and nodule number, only gibberellin is important for the establishment of a functional nodule metabolome.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fixação de Nitrogênio/efeitos dos fármacos , Pisum sativum/genética , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Simbiose/efeitos dos fármacos , Brassinosteroides/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Giberelinas/metabolismo , Mutação , Pisum sativum/microbiologia , Rhizobium/fisiologia
3.
Planta ; 252(4): 70, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32995943

RESUMO

MAIN CONCLUSION: A comprehensive analysis of the role of brassinosteroids in nodulation, including their interactions with auxin and ethylene revealed that brassinosteroids inhibit infection, promote nodule initiation but do not influence nodule organogenesis or function. Nodulation, the symbiosis between legumes and rhizobial bacteria, is regulated by a suite of hormones including brassinosteroids. Previous studies have found that brassinosteroids promote nodule number by inhibiting ethylene biosynthesis. In this study, we examined the influence of brassinosteroids on the various stages of infection and nodule development. We utilise pea mutants, including brassinosteroid mutants lk, lka and lkb, the ethylene insensitive ein2 mutant and the lk ein2 double mutant, along with transgenic lines expressing the DR5::GUS auxin activity marker to investigate how brassinosteroids interact with ethylene and auxin during nodulation. We show that brassinosteroids inhibit the early stages of nodulation, including auxin accumulation, root hair deformation and infection thread formation, and demonstrate that infection thread formation is regulated by brassinosteroids in an ethylene independent manner. In contrast, brassinosteroids appear to act as promoters of nodule initiation through both an ethylene dependent and independent pathway. Although brassinosteroids positively influence the ultimate number of nodules formed, we found that brassinosteroid-deficiency did not influence nodule structure including the vascular pattern of auxin activity or nitrogen-fixation capacity. These findings suggest that brassinosteroids are negative regulators of infection but positive regulators of nodule initiation. Furthermore, brassinosteroids do not appear to be essential for nodule organogenesis or function. Given the influence of brassinosteroids on discreet stages of nodulation but not nodule function, manipulation of brassinosteroids may be an interesting avenue for future research on the optimisation of nodulation.


Assuntos
Brassinosteroides , Etilenos , Ácidos Indolacéticos , Pisum sativum , Nodulação , Brassinosteroides/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Nodulação/fisiologia , Simbiose
4.
Front Plant Sci ; 10: 269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930916

RESUMO

Plant hormones play key roles in nodulation and arbuscular mycorrhizal (AM) associations. These two agriculturally and ecologically important symbioses enable plants to gain access to nutrients, in particular, nitrogen in the case of nodulation and phosphorous in the case of AM. Work over the past few decades has revealed how symbioses with nitrogen-fixing rhizobia, restricted almost exclusively to legumes, evolved in part from ancient AM symbioses formed by more than 80% of land plants. Although overlapping, these symbiotic programs also have important differences, including the de novo development of a new organ found only in nodulation. One emerging area of research is the role of two plant hormone groups, the gibberellins (GAs) and brassinosteroids (BRs), in the development and maintenance of these symbioses. In this review, we compare and contrast the roles of these hormones in the two symbioses, including potential interactions with other hormones. This not only focuses on legumes, most of which can host both symbionts, but also examines the role of these in AM development in non-legumes. GA acts by suppressing DELLA, and this regulatory module acts to negatively influence both rhizobial and mycorrhizal infection but appears to promote nodule organogenesis. While an overall positive role for BRs in nodulation and AM has been suggested by studies using mutants disrupted in BR biosynthesis or response, application studies indicate that BR may play a more complex role in nodulation. Given the nature of these symbioses, with events regulated both spatially and temporally, future studies should examine in more detail how GAs and BRs may influence precise events during these symbioses, including interactions with other hormone groups.

5.
Plant Physiol ; 175(1): 351-360, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28733387

RESUMO

Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the Crispoid (Crd) locus in pea (Pisum sativum), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.


Assuntos
Ácidos Indolacéticos/metabolismo , Fotossíntese , Pisum sativum/fisiologia , Proteínas de Plantas/metabolismo , Homeostase , Mutação , Oxigenases/genética , Oxigenases/metabolismo , Pisum sativum/anatomia & histologia , Pisum sativum/genética , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...